9,638 research outputs found

    Experimental combustor study program

    Get PDF
    Advanced combustor concepts are evaluated as a means of accommodating possible future broad specification fuels. The three advanced double annular combustor concepts consisted of (1) a concept employing high pressure drop fuel nozzles for improved atomization, (2) a concept with premixing tubes in the main stage, and (3) a concept with the pilot stage on the inside and the main stage on the sideout, which is the reverse of the other two concepts. All of the advanced concepts show promise for reduced sensitivity to fuel hydrogen content. Some hardware problems were encountered, but these problems could be quickly resolved if refinement tests were conducted. The design with the premixing main stage was selected for a parametric test because of its low NOx emissions level, carbon free dome, and very low dome temperatures which were essentially independent of fuel type. The other advanced designs also had low done temperatures. The premixing dome design liner temperatures exhibited less sensitivity to fuel type than did the base-line combustor, although more sensitivity than observed for concept 1. The inner liner hot spot and the observed smoke results for the premixing design suggest that the fuel-air mixture was not as uniform as desired

    Are periodic solar wind number density structures formed in the solar corona?

    Get PDF
    [1] We present an analysis of the alpha to proton solar wind abundance ratio (AHe) during a period characterized by significant large size scale density fluctuations, focusing on an event in which the proton and alpha enhancements are anti-correlated. In a recent study using 11 years (1995–2005) of solar wind observations from the Wind spacecraft, N. M. Viall et al. [2008] showed that periodic proton density structures occurred at particular radial length-scales more often than others. The source of these periodic density structures is a significant and outstanding question. Are they generated in the interplanetary medium, or are they a relic of coronal activity as the solar wind was formed? We use AHe to answer this question, as solar wind elemental abundance ratios are not expected to change during transit. For this event, the anti-phase nature of the AHe variations strongly suggests that periodic solar wind density structures originate in the solar corona

    Schwinger pair production with ultracold atoms

    Get PDF
    We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose-Einstein condensates interacting with fermionic atoms. The calculations based on functional integral techniques give a unique access to the physical parameters required to realize the QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states rather than single atoms for quantum simulations of high-energy particle physics phenomena.Comment: 5 pages, 4 figures, PLB versio

    The size of the nucleosome

    Get PDF
    The structural origin of the size of the 11 nm nucleosomal disc is addressed. On the nanometer length-scale the organization of DNA as chromatin in the chromosomes involves a coiling of DNA around the histone core of the nucleosome. We suggest that the size of the nucleosome core particle is dictated by the fulfillment of two criteria: One is optimizing the volume fraction of the DNA double helix; this requirement for close-packing has its root in optimizing atomic and molecular interactions. The other criterion being that of having a zero strain-twist coupling; being a zero-twist structure is a necessity when allowing for transient tensile stresses during the reorganization of DNA, e.g., during the reposition, or sliding, of a nucleosome along the DNA double helix. The mathematical model we apply is based on a tubular description of double helices assuming hard walls. When the base-pairs of the linker-DNA is included the estimate of the size of an ideal nucleosome is in close agreement with the experimental numbers. Interestingly, the size of the nucleosome is shown to be a consequence of intrinsic properties of the DNA double helix.Comment: 11 pages, 5 figures; v2: minor modification

    ["While washing the spoon..."]

    Get PDF

    [In the epileptic's apartment..]

    Get PDF
    • …
    corecore